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1. Supplemental Materials1

1.1. Clustering Analysis2

Clustering is a popular topic in unsupervised machine learn-3

ing, and it was applied to flow visualization to extract and high-4

light information of flow data. A popular clustering technique5

is K-means which enjoys easy implementation and fast conver-6

gence. More importantly, it has a relatively low overhead with7

O(kMN) complexity. However, K-means has some restrictions,8

such as its strict demand of a hyper-spherical structure in the9

high-dimension space, same variance in observation functions,10

etc., as discussed in [1]. Improved K-means has been proposed,11

including K-means++ [2], IODATA [3] and kernel K-means12

[4], which achieves better clustering results at higher computa-13

tional overhead.14

Another prevailing method is the agglomerative hierarchi-15

cal clustering (AHC) [5] which achieves a bottom-up cluster-16

ing. Compared to K-means, AHC can provide better cluster-17

ing quality because of fewer restrictions of data distribution in18

high-dimensional space. Nevertheless, it has much higher com-19

putation complexity than K-means. In general, its complex-20

ity is O(NM2 log M), making it too slow for the processing of21

large datasets. Also, final clustering results are sensitive to user-22

defined threshold.23

Spectral clustering (SC) makes use of the spectrum of simi-24

larity matrix to perform dimensionality reduction before clus-25

tering, which may achieve rather good results in streamline26

detection and clustering [6, 7, 8, 9]. Normalized cut is one27

spectral clustering widely used in image processing [10] and28

stream-tube clustering and analysis [11]. However, SC is even29

more computationally demanding than AHC due to the simi-30

larity matrix computation and SVD decomposition. SC also31

suffers from a demanding memory requirement with O(lM2) (l32

is constant number of matrices) complexity.33

Therefore, considering the performance and memory over- 34

head of the conventional AHC and SC techniques, we mainly 35

applied K-means clustering to assess the performance of vari- 36

ous distance/similarity metrics on our flow datasets. We would 37

leave implementations of our metrics with improved hierarchi- 38

cal clustering in future work. 39

1.2. Metric Design 40

1.2.1. Spatial-based Metrics 41

Spatial-based metrics are only concerning the spatial distance 42

between two feature vectors. These examples include 43

1. Euclidean distance LEuc: The most intuitive spatial dis- 44

tance is the Euclidean distance. It’s easy to implement and 45

guarantees unconditional convergence especially for the 46

K-means clustering. However, in high-dimensional space, 47

Euclidean distance would not accurately demonstrate the 48

same distribution as in lower-dimension. 49

2. Principal component analysis (PCA) distance metric 50

LPCA: The PCA-based metric LPCA is taken from [12], in 51

which high-dimensional feature vectors of curves are re- 52

duced to lower-dimensional ones via PCA, followed by an 53

Euclidean-based clustering. The benefit of this method is 54

that it automatically determines the dimensionality in the 55

lower-dimension space according to standard deviation ac- 56

cumulation. 57

3. Fraction distance metric LFrac * 1: Fraction distance met- 58

ric in high-dimension space was firstly proposed in [13]. 59

Due to the different distribution characteristics of data in 60

the high-dimensional space than in the lower dimensional 61

space, fraction distance metric enables to increase the con- 62

trast between points with the closest and furthest distance, 63

1* denotes the new metrics proposed in this work for flow visualization
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respectively. We are the first to introduce this fraction dis-1

tance metric into the flow visualization community to per-2

form spatial clustering.3

Specifically, given high-dimensional vectors x and y of4

same dimension d = 3N, their fraction distance is defined5

as6

LFrac(x, y) = (
d∑
i

∥ xi − yi ∥p)
1
p (1)

where 0 < p < 1 is a constant.7

Note that fraction distance does not satisfy triangle in-8

equality. Since smaller p would increase the contrast be-9

tween the closest and furthest points, in our experiment we10

set p = 0.5.11

4. Normalized dot distance metric LDot* : LDot is a gen-12

eralized distance metric from the 3D Euclidean space to13

the high-dimensional space, which measures the pseudo14

intersection-angle between two feature vectors. It is de-15

fined as16

LDot(x, y) = arccos
x̃ · ỹ
N

(2)

x̃ = {̃xi}di=1
ỹ = {̃yi}di=1

(3)

x̃i =
xi
∥xi∥

ỹi =
yi
∥xi∥

(4)

Notice that LDot is actually estimating the average intersec-17

tion angle between each pair of normalized vertices along18

two curves x and y, and it is spatially sensitive.19

1.2.2. Statistics-based Metrics20

The basic intuition of our design of the statistics-based met-21

rics comes from the fact that each curve can be regarded as22

a Gaussian distribution of either single-variate or multi-variate23

from the law of large numbers as in [14]. Then, we are able24

to use the Bhattacharyya metric [15] to measure relative close-25

ness of two Gaussian distributions. The benefit of this met-26

ric group is that it doesn’t need pair-wise comparison, hence27

no need to elongate each curves to be exactly the same size.28

Despite performance improved by matrix computation, statistic29

metrics will work best with large enough N (N is number of30

vertices of curves).31

To be specific, the discrete curvature is defined as32

τi = arccos
xi · xi+1

∥ xi ∥ · ∥ xi+1 ∥
(5)

1. Bhattacharyya metric for curvature sequence LBMCS *:33

Each curve has a discrete curvature sequence computed34

by piece-wise angles, which theoretically forms a Guas-35

sian distribution for independent random curvatures along36

a curve. Then LBMCS is represented as37

LBMCS (x, y) =
1
4

ln

1
4

σ2
p

σ2
q
+
σ2

q

σ2
p
+ 2


+

1
4

 (µp − µq)2

σ2
p + σ

2
q

 (6)

where p, q are curvature sequences, respectively, for two 38

streamlines x and y. µp, µq are their means, and σp, σq are 39

their standard deviations. 40

2. Bhattachryya metric for to-fixed-direction angles LBMT A* 41

Different from the piece-wise curvature as in Eq. (5), 42

LBMT A measures the Bhattacharyya metric for the angle 43

sequences of line segments to a fixed direction. This met- 44

ric is more robust than LBMCS because the latter is very 45

sensitive to initial line segment direction. The two angle 46

sequences are compared using the same format as in Eq. 47

(6). 48

3. Bhattacharyya metric for normalized line direction 49

LBMNLD* 50

Similar to LDot in Eq. (4), we can obtain a normalized di- 51

rection sequences x̃ and ỹ for two curves x and y. We could 52

take x̃ and ỹ as 3D independent random variables, which 53

enables a multivariate Bhattachryya distance on them as 54

below 55

LBMNLD(x, y) =
1
8

(µ1 − µ2)T Σ−1 (µ1 − µ2)

+
1
2

(
detΣ

√
detΣ1 detΣ2

) (7)

where µ1 and µ2 is respectively mean vector of x̃ and ỹ, 56

and Σ1 and Σ2 is covariance matrix. 57

4. Bhattachryya metric for unnormalized line direction 58

LBMULD* 59

Different to LBMNLD, LBMULD didn’t normalized the di- 60

rection vector of line segments, which is due to the fact 61

that longer line segments with same direction should in- 62

crease disimilarity result as ground truth. The computa- 63

tion of LBMULD is exactly the same as LBMNLD in Eq. (7), 64

with line segment direction not normalized to convey more 65

length-related information. 66

Fig. 1. Illustration for LGPW . Two streamlines x and y composed of line
segments by vertices. We can measure the intersection angle between two
piece-wise line segments, as α is angle between two piece-wise line segments
[x1,x2] and [y1,y2]

1.3. Metric Analysis 67

Performance study We also conducted a simple performance 68

study on the K-means clustering combined with our metrics us- 69
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Fig. 2. Illustration for LS APW . Two streamlines x and y composed of line
segments by vertices which are similar in shape. We can measure the in-
tersection angle between two piece-wise line segments, as ̸ AOD is angle
between [x1,x2] and [y1,y2], and ̸ COB is angle between [v99,v100] and
[s99,s100]. They have opposite sign as to Formula (signed) so will cancel
out. Their distance under LS APW would be 0.

Fig. 3. Four streamlines x,y,z and w are measured to be zero distance under
LS APW , which means they’re regarded as same shape. Then LS APW can
eliminate these repeated and unimportant streamlines.

Fig. 4. Time spent for each iteration of the K-means clustering with our
metrics on different dimensions of input curves of the flow behind cylin-
der with LGPW metric. The preset cluster number is 120 and the maximal
iterations are 20. We observe a linear increase of time w.r.t the curve di-
mensions.

Fig. 5. Streamlines in flow datasets colormapping with increasing index
Top first: sparse Bernard streamlines (256 streamlines). Top second: for
flow behind cylinder (9266 streamlines).

ing the flow behind cylinder data (bottom in Figure 5). In partic- 1

ular, we chose LGPW as an example for this study (other metrics 2

have similar performance). The number of the input stream- 3

lines is 9266, and dimension of curves is increasing from 300 4

to 1800. Figure 4 shows the times spent on one iteration of the 5

clustering of these increasing curve dimensions of streamlines. 6

From this plot, we see that the time spent on the clustering in- 7

creases approximately linearly w.r.t to the curve dimensions of 8

input streamlines. . 9

Property study 10

Basic properties for different metrics designed in Section 3 11

of main contents are listed in Table 1. There’re three important 12

mathematical characteristics for a metric as below 13

• Homogeneity: It measures whether a metric is scaling-free 14

or not, which is to testify L(ax, y) ≡ |a|L(x, y) satisfied or 15

not, where a is a constant value. 16

• Tri-Inequality: It determines whether L(x, z) ≤ L(x, y) + 17

L(y, z) is satisfied or not. 18

• Definiteness: It tests whether the derivation is satisfied 19

L(x, y) ≡ 0 ⇐⇒ x ≡ y or not. It measures whether only 20

two totally identical curves can have zero distance in met- 21

ric or not. 22

Homogeneity measures scaling-free property for a defined 23

metric. If a metric is scaling-free for curves inside the domain, 24

e.g., L(ax, y) ≡ L(x, y), then this metric should violate homo- 25

geneity. Homogeneity is essentially spatially related, so most of 26

spatial metrics, i.e., LEuc and LFrac can conform by homogene- 27

ity, while LDot didn’t because it has a normalization process 28

during metric computation. 29

Definiteness measures spatial uniqueness for two curves un- 30

der a metric. If it’s satisfied, topological compactness along 31

with tri-inequality can be applied in the metric space so that 32

mature mathematical concepts would be applied directly here. 33



4 Lieyu Shi etal /Computers & Graphics (2017)

However, since we study for curve similarity, definiteness could1

be violated easily because two separate curves should have zero2

distance in dissimilarity metric.3

The most arguable property of metric goes to tri-inequality.4

For the tri-inequality, all spatial and geometric metrics satisfy5

this property except LFrac. Spatial metrics and geometric met-6

rics are based on either Euclidean distance or intersection angle,7

but LFrac exponentially increases contrast which violates the8

tri-inequality. Besides, all statistic-related metrics do not obey9

the tri-inequality, as also mentioned in [15] about the Bhat-10

tacharyya metric.11

Proof of tri-inequality for geometric metrics would be very12

straightforward. Since they’re defined on average of piece-wise13

parallelism or intersection angle, we simplify the proof to be the14

tri-inequality of single segment parallelism, i.e., arccos(xi, yi),15

which is definitely obeying tri-inequality. Hence, LGPW satis-16

fies triangle inequality. The same goes for LS APW , where better17

situation is that left side of inequality eliminates piece-wise an-18

gle, and worse situation is right side eliminates piece-wise in-19

tersection angle but still at most the inequality equals to right.20

However, it’s not easy to judge LGPWD because it has an am-21

plifier of standard deviation. We estimate it with doubt to obey22

triangle-inequality by deductions on extreme conditions.23

Table 1 does provide a pragmatic guideline for metric selec-24

tion based on the property that needs to be emphasized in a25

specific application setting. For example, if streamlines with26

strong tortuosity (i.e. with certain helical behavior) are of in-27

terest without considering different types of rotation, then the28

LS APW is preferred as an ideal metric.29

1.4. Metric-based Experiment30

1.4.1. Bernard Dataset31

Figure 8 demonstrates the metric-based clustering and ex-32

traction result on simplified Bernard. We chosen k-means intial33

controids as random curves in the spatial domain, and preset34

cluster number to be 20. The final clusters are often smaller35

than 20 due to some centroid having no curves assigned.36

We first tested our metrics on the Bernard data. As shown37

in Figure 8, LPCA (Row 2), LFrac (Row 3), LGPW (Row 5) and38

LS APW (Row 6) are able to approximately preserve the two vor-39

tex structures. Among these four metrics, LGPW (Row 5) and40

LS APW (Row 6) could best preserve the vortex structures using41

the closest streamlines (middle column), while LPCA (Row 2)42

and LFrac (Row 3) are better in terms of furthest streamlines43

(right column). Entropy of different metrics is shown in Figure44

6. Among all metrics, the results produced with LPCA ranks the45

highest, followed by LFrac and LGPW . As we indicated in Ta-46

ble 1, statistic-based metrics may not work well for small-size47

curves, and their corresponding entropy values also show that48

most of them are zeros. This is mostly because small samples49

cannot provide sufficient variance of an effective and accurate50

statistics-based distance computation. Therefore, we can con-51

clude based on this experiment that if the input set of curves is52

sparse enough, we should consider spatial-based metrics over53

the statistics-based metrics. Also, our geometric metric LGPW54

and spatial metric LFrac has relatively close entropy value to55

LPCA, while LGPW preserves better vortex-similar structures in 56

closest trajectories. 57

1.4.2. PBF Two-Half-Merging 58

The second PBF simulation data we experiment with is the 59

two-half-merging scenario. 300K trajectories with 250 points 60

for each trajectory are used. The clustering results and their cor- 61

responding representative trajectories are shown in Figure 10 . 62

From the results, we see that in general our LFrac (row 3) is able 63

to provide the same or similar representation of the general par- 64

ticle trends as LPCA (row 2). In contrast, our geometric metrics 65

(rows 4, 5 and 6 ) focus more on the details and tortuous tra- 66

jectory extraction. For example, the representative trajectories 67

that are furthest away from the centroids using LGPW (row 4) 68

and LGPWD (row 6) have lots of small-size winding trajectories, 69

while the trajectories closest to the centroids of the same met- 70

rics focus on longer trajectories. Our geometric metrics identify 71

these short and tortuous trajectories as potential features, which 72

again to some extend demonstrate that these metrics favor the 73

tortusity of the trajectories. 74

The entropy values of the clustering results with different 75

metrics for this dataset is shown in Figure 2 of main content, 76

and our two geometric metrics (highlighted in red) are ranked 77

top two, which supports our observation above. 78

Also we notice that our LFrac performs as well as LPCA, as 79

already seen in previous datasets. The preference of entropy 80

on geometric metrics is that they are able to extract small but 81

tortuous trajectories as features inside particle-based datasets, 82

as rows 4 and 6 in Figure 10, especially trajectories furthest 83

away from centroids have much more tortuous behaviors than 84

the other metrics. 85

Fig. 6. Entropy values for metrics on Bernard datasets, and LPCA is ranked
the highest (highlighted by red).
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Fig. 8. Metric evaluation on simplified Bernard with the K-means clustering. Several metrics cannot extract more than 2 clusters, so we leave them out.
From top to bottom, results with LEuc, LPCA, LFrac, LDot , LGPW , LS APW , LGPWD and LBMT A are shown, respectively. From left to right of each row, grouping
streamlines, closest streamlines to centroid, and farthest streamlines to centroid are visualized, respectively. Streamlines are color coded based on which
clusters they belong to. From visual comparisons, we see that LPCA (Row 2), LFrac (Row 3), LGPW (Row 5) and LS APW (Row 6) work better than the other
metrics.
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Table 1. Brief reviews on properties of our distance metrics defined in Section 3 Metric Designing

Group Metric Homogeneity Tri-Inequality Definiteness Remarks Common characteristics

Spatial

L Euc Yes Yes Yes

Strictly hyper-spherical

structures in

higher-dimension spaces.

Translation and rotation sensitive.

Scaling-sensitive.

Not similarity in shape.

Tells how close two curves are.LPCA Yes Yes No

More then O(d).

SVD for larger-scale

is super expensive.

LFrac* Yes No Yes

Easy for overflow.

Parameter-sensitive.

Increase contrast in

higher-dimension space.

LDot* No Yes No Weak in spatial measurement.

Geometric

LGPW* No Yes No Translation-invariant and

spatial-independent.

Scaling-free. Only

dissimilarity in shape.

Tells how parallel two curves are.

LS APW* No Yes No

Rotation-invariant.

Eliminate cosine-similar

curve to straight line.

LGPWD* No Yes No

Somehow rotation-invariant.

Can group curves with

same curvature distribution.

Statistic

LBMCS * No No No

Sensitive to first line segment

direction. Can’t distinct curves

with similar curvature trends.

Curvature-oriented

Translation-invariant

and spatial-independent.

Scaling-free and order-free.

Only measures distribution trends.

Not working well especially

for small-size curves

faster in matrix operation

LBMT A* No No No

Can’t distinct curves which

winds an axis at same angles.

Intersection-angle based

LBMNLD* No No No Only concerning directions.

LBMULD* No No No
Convey length information

compared to LBMND
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Fig. 9. Metric evaluation on the dam-breaking data with the K-means clustering. Several metrics cannot extract more than 10 clusters, so we leave them
out. From top to bottom, results with LEuc, LPCA, LFrac, LGPW , LS APW , LGPWD, LBMT A and LBMNLD are shown, respectively. Left to right of each row,
grouping trajectory, trajectories closest, furthest away from centroid and centroid of each cluster are shown, respectively. In all three representative
trajectory identification, LGPW (row 4) works the best with the latter having more details. The other metrics have more or less omitted trajectories of
importance.
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Fig. 10. Metric evaluation on the two-half-merging data with the K-means. Several metrics cannot extract more than 10 clusters, so we leave them out.
From top to bottom, the results with LEuc, LPCA, LFrac, LDot , LGPW , LS APW , LGPWD and LBMT A are shown, respectively. Left to right of each row, grouping
trajectories, trajectories closest to centroids, trajectories furthest away from centroids and centroid of each cluster are shown, respectively. LPCA (row 2)
and LFrac (row 3) work the best which enables the visualization representing the approximate structure of trajectories, while our geometric metrics (row
3, 4 and 5) tend to extract small-size tortuous trajectories due to their more emphasis on geometric shape.
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